
International Journal of Solids and Structures 43 (2006) 4082–4096

www.elsevier.com/locate/ijsolstr
Thermal buckling of imperfect functionally graded plates

B.A. Samsam Shariat, M.R. Eslami *

Mechanical Engineering Department, Amirkabir University of Technology, Tehran 15914, Iran

Received 5 April 2005
Available online 21 June 2005
Abstract

Thermal buckling analysis of rectangular functionally graded plates (FGPs) with geometrical imperfections is pre-
sented in this paper. The equilibrium, stability, and compatibility equations of an imperfect functionally graded plate
are derived using the classical plate theory. It is assumed that the nonhomogeneous mechanical properties of the plate,
graded through thickness, are described by a power function of the thickness variable. The plate is assumed to be under
three types of thermal loading as uniform temperature rise, nonlinear temperature rise through the thickness, and axial
temperature rise. Resulting equations are employed to obtain the closed-form solutions for the critical buckling tem-
perature change of an imperfect FGP. The results are reduced and compared with the results of perfect functionally
graded and imperfect isotropic plates.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

A comprehensive work on the buckling of structures is presented by Brush and Almroth (1975). They
have examined the effect of initial imperfections on the critical loads. A review of research on thermal buck-
ling of plates and shells since the first work in 1950s is presented by Thornton (1993). He has described the
elastic thermal buckling of metallic as well as composite plates and shells. Turvey and Marshall (1995) stud-
ied buckling and postbuckling of composite plates due to mechanical and thermal loads.

The initial geometric imperfections are inherent in many real structures. Therefore, many investigations
are conducted on the stability analysis of imperfect structures. Elastic, plastic, and creep buckling of imper-
fect cylinders under mechanical and thermal loads is studied by Eslami and Shariyat (1997). Mossavarali
et al. studied the thermoelastic buckling of isotropic and orthotropic plates with imperfections (Mossavarali
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Nomenclature

a, b plate length and width
E(z), Ec, Em elasticity modulus of FGM, ceramic and metal
h plate thickness
k power law index
ki curvatures
K(z), Kc, Km thermal conductivity of FGM, ceramic and metal
m, n number of half waves in x- and y-directions
Ni, Mi force and moment resultants
T temperature
u, v, w displacement components
w* initial imperfection
x, y, z rectangular Cartesian coordinates
a(z), ac, am coefficient of thermal expansion of FGM, ceramic and metal
cxy shear strain
�x, �y normal strains
l imperfection size
m0 Poisson�s ratio
DTcr critical buckling temperature change
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et al., 2000; Mossavarali and Eslami, 2002). Murphy and Ferreira (2001) investigated thermal buckling
analysis of clamped rectangular plates based on the energy consideration. They determined the ratio of
the critical temperature for a perfect flat plate to the one for an imperfect plate as a function of the initial
imperfection size. The study includes experimental results. Eslami and Shahsiah (2001) reported thermal
buckling of imperfect circular cylindrical shells based on the Wan-Donnell and Koiter imperfection models.

The development of new materials with new constitutive models have necessitated more research in the
area of stability analysis. Functionally graded materials (FGMs) are of these new and high-temperature
resistant materials in which material constitution vary continuously across the thickness of a structure.
Some works about the stability of FGM structures are introduced in the following. Javaheri and Eslami
(2001, 2002a,b,c) reported mechanical and thermal buckling of rectangular functionally graded plates. They
used energy method and mainly reached to the closed-form solutions. Najafizadeh and Eslami (2002a,b)
studied thermoelastic stability of circular FGPs. The research on thermal buckling of functionally graded
cylindrical shells is introduced by Shahsiah and Eslami (2003a,b). Ma and Wang (2004) employed the third
order shear deformation plate theory to solve the axisymmetric bending and buckling problems of function-
ally graded circular plates. Shen (2004) represented thermal postbuckling behavior of functionally graded
cylindrical shells with temperature dependent properties. He considered initial geometric imperfections in
the analysis. Three dimensional thermal buckling analysis of functionally graded materials, using finite ele-
ment method, is reported by Na and Kim (2004).

In the present article, the influence of geometrical imperfections on thermal instability of FGPs is inves-
tigated. The plate is graded through the thickness direction according to a power law function. The classical
plate theory is used with a double-sine function for the geometric imperfection along the x- and y-direc-
tions. The boundary conditions along the four edges of the plate are assumed to be fixed-simply supported.
The buckling of the plate under three types of thermal loads are obtained. The thermal loads are assumed
to be the uniform temperature rise, nonlinear thermal gradient through the thickness direction, and the ax-
ial temperature variation along the x-direction. Closed formed solutions are obtained and given for all three
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types of the assumed thermal loads. The results are validated with the results of homogeneous plates under
the same types of thermal loads
2. Functionally graded plates

Functionally graded materials (FGMs) are microscopically inhomogeneous materials in which the
mechanical properties vary smoothly and continuously through the thickness. This is achieved by gradually
changing the volume fraction of the constituent materials. These materials are typically made from a mix-
ture of ceramic and metal or a combination of different metals (Reddy and Chin, 1998). The ceramic part
provides high-temperature resistance and the metal part prevents fracture due to thermal loadings. We as-
sume that the modulus of elasticity E, the coefficient of thermal expansion a, and conductivity K change in
the thickness direction z, while the Poisson�s ratio m is assumed to be constant. The material properties of
FGP are introduced as (Javaheri and Eslami, 2002a)
EðzÞ ¼ Em þ Ecm

2zþ h
2h

� �k

;

aðzÞ ¼ am þ acm

2zþ h
2h

� �k

;

KðzÞ ¼ Km þ Kcm

2zþ h
2h

� �k

;

mðzÞ ¼ m0;

ð1Þ
where
Ecm ¼ Ec � Em;

acm ¼ ac � am;

Kcm ¼ Kc � Km;

ð2Þ
and subscripts �m� and �c� refer to the metal and ceramic constituents, respectively. The variable z is the
thickness coordinate (�h/2 6 z 6 h/2), where h is the thickness of the plate and k is the power law index
which takes values greater than or equal to zero. The variation of the composition of ceramic and metal
is linear for k = 1. The value of k equal to zero represents a fully ceramic plate.
3. Analysis

Consider a rectangular thin flat plate of length a width b and thickness h made of FGM. The plate is
subjected to thermal loading. Rectangular Cartesian coordinates (x,y,z) are assumed for derivations.

The constitutive relations are written as (Javaheri and Eslami, 2002a)
Nx ¼
E1

1� m2
0

ð�x þ m0�yÞ þ
E2

1� m2
0

ðkx þ m0kyÞ �
Um

1� m0

;

Ny ¼
E1

1� m2
0

ð�y þ m0�xÞ þ
E2

1� m2
0

ðky þ m0kxÞ �
Um

1� m0

;

Nxy ¼
E1

2ð1þ m0Þ
cxy þ

E2

1þ m0

kxy ;
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Mx ¼
E2

1� m2
0

ð�x þ m0�yÞ þ
E3

1� m2
0

ðkx þ m0kyÞ �
Ub

1� m0

;

My ¼
E2

1� m2
0

ð�y þ m0�xÞ þ
E3

1� m2
0

ðky þ m0kxÞ �
Ub

1� m0

;

Mxy ¼
E2

2ð1þ m0Þ
cxy þ

E3

1þ m0

kxy ð3Þ
where
E1 ¼ Emhþ Ecmh
k þ 1

;

E2 ¼ Ecmh2 1

k þ 2
� 1

2k þ 2

� �
;

E3 ¼
Emh3

12
þ Ecmh3 1

k þ 3
� 1

k þ 2
þ 1

4ðk þ 1Þ

� �
;

Um ¼
Z h

2

�h
2

Em þ Ecm

2zþ h
2h

� �k
" #

am þ acm

2zþ h
2h

� �k
" #

DT ðx; y; zÞdz;

Ub ¼
Z h

2

�h
2

Em þ Ecm
2zþ h

2h

� �k
" #

am þ acm
2zþ h

2h

� �k
" #

DT ðx; y; zÞzdz.

ð4Þ
In the above equations, Ni and Mi are force and moment resultants, respectively, �x and �y are the normal
strains and cxy is shear strain at the middle surface of the plate. The curvatures are shown by ki. Strains and
curvatures are related to the displacement components as (Brush and Almroth, 1975)
�x ¼ u;x þ 1
2
w2
;x;

�y ¼ v;y þ 1
2
w2
;y ;

cxy ¼ u;y þ v;x þ w;xw;y ;

kx ¼ �w;xx;

ky ¼ �w;yy ;

kxy ¼ �w;xy ;

ð5Þ
where u, v, and w are displacement components along the x-, y-, and z-directions, respectively. The equi-
librium equations of a perfect functionally graded plate are (Javaheri and Eslami, 2002a)
Nx;x þ Nxy;y ¼ 0;

Nxy;x þ N y;y ¼ 0;

Mx;xx þ 2Mxy;xy þMy;yy þ Nxw;xx þ 2Nxyw;xy þ N yw;yy ¼ 0.

ð6Þ
Considering Eqs. (3) and (5), the equilibrium equations may be described in more usable form as
Nx;x þ Nxy;y ¼ 0;

Nxy;x þ N y;y ¼ 0;

Dr4w� Nxw;xx � 2Nxyw;xy � N yw;yy �
E2

ð1� m0ÞE1

ðUm;xx þ Um;yyÞ þ
1

1� m0

ðUb;xx þ Ub;yyÞ ¼ 0;

ð7Þ
where
D ¼ E1E3 � E2
2

ð1� m2
0ÞE1

. ð8Þ
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For a slightly imperfect plate, let w*(x,y) denotes a known small imperfection. This parameter represents
a small deviation of the plate middle plane from a flat shape. To consider imperfections, the displacement
component w in the third relation of Eq. (7) must be replaced by (w + w*). Note that the term D$4w will be
unchanged, because this term is obtained from the expressions for bending moments and these moments
depend not on the total curvature but only on the change in curvature of the plate (Timoshenko and Gere,
1961). Therefore, equilibrium equation (7) are modified as
Nx;x þ N xy;y ¼ 0;

Nxy;x þ Ny;y ¼ 0;

Dr4w� N xðw;xx þ w�;xxÞ � 2Nxyðw;xy þ w�;xyÞ � Nyðw;yy þ w�;yyÞ

� E2

ð1� m0ÞE1

ðUm;xx þ Um;yyÞ þ
1

1� m0

ðUb;xx þ Ub;yyÞ ¼ 0.

ð9Þ
The stability equations of the plate may be derived by the adjacent equilibrium criterion (Brush and
Almroth, 1975). Assume that the equilibrium state of a FGP under thermal load is defined in terms of dis-
placement components u0, v0, and w0. The displacement components of a neighboring stable state differ by
u1, v1, and w1 with respect to the equilibrium position. Thus, the total displacements of a neighboring state
are
u ¼ u0 þ u1;

v ¼ v0 þ v1;

w ¼ w0 þ w1.

ð10Þ
Similarly, the force resultants of a neighboring state may be related to the state of equilibrium as
Nx ¼ Nx0 þ DN x;

Ny ¼ Ny0 þ DNy ;

Nxy ¼ N xy0 þ DN xy ;

ð11Þ
where DNx, DNy, and DNxy are the increments corresponding to u1, v1, and w1, respectively. Now, let Nx1,
Ny1, and Nxy1 represent the parts of D Nx, DNy, and DNxy that are linear in u1, v1, and w1. The above rela-
tions with consideration of linear force increments are written as
Nx ¼ Nx0 þ Nx1;

Ny ¼ Ny0 þ Ny1;

Nxy ¼ N xy0 þ N xy1.

ð12Þ
The stability equations may be obtained by substituting Eqs. (10) and (12) in Eq. (9). We assume that the
temperature variation is at last linear with respect to x- and y-directions. Upon substitution, the terms in
the resulting equations with subscript 0 satisfy the equilibrium condition and therefore drop out of the
equations. Also, the nonlinear terms with subscript 1 are ignored because they are small compared to
the linear terms. The remaining terms form the stability equations of an imperfect rectangular FGP under
thermal load as
Nx1;x þ Nxy1;y ¼ 0;

Nxy1;x þ Ny1;y ¼ 0;

Dr4w1 � N x0w1;xx � 2Nxy0w1;xy � Ny0w1;yy

� N x1ðw0;xx þ w�;xxÞ � 2Nxy1ðw0;xy þ w�;xyÞ � Ny1ðw0;yy þ w�;yyÞ ¼ 0.

ð13Þ
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The subscript �1� refers to the state of stability and the subscript �0� refers to the state of equilibrium con-
ditions. Considering the first two of Eq. (13), a stress function f may be defined as
N x1 ¼ f;yy ;

Ny1 ¼ f;xx;

Nxy1 ¼ �f;xy .

ð14Þ
Substitution of Eq. (14) in the third of Eq. (13) leads to
Dr4w1 � N x0w1;xx � 2Nxy0w1;xy � Ny0w1;yy � f;yyðw0;xx þ w�;xxÞ þ 2f ;xyðw0;xy þ w�;xyÞ � f;xxðw0;yy þ w�;yyÞ ¼ 0.

ð15Þ

This equation is the stability equation for an imperfect FGP. The equation includes two dependent un-
knowns, w1 and f. To obtain a second equation relating these two unknowns, the compatibility equation
may be used.

Assume �x1, �y1, and cxy1 denote parts of the strain components which are linear in u1, v1, and w1. These
strains may be written in terms of the displacement components, using Eqs. (3), (5) and (10)–(12) with con-
sideration of the imperfection term w*, as
�x1 ¼ u1;x þ ðw0;x þ w�;xÞw1;x;

�y1 ¼ v1;y þ ðw0;y þ w�;yÞw1;y ;

cxy1 ¼ u1;y þ v1;x þ ðw0;x þ w�;xÞw1;y þ ðw0;y þ w�;yÞw1;x.

ð16Þ
Using Eq. (16), the geometrical compatibility equation is written as
�x1;yy þ �y1;xx � cxy1;xy ¼ 2ðw0;xy þ w�;xyÞw1;xy � ðw0;xx þ w�;xxÞw1;yy � ðw0;yy þ w�;yyÞw1;xx. ð17Þ
From the constitutive relations (3), one can write
�x1 ¼
1

E1

ðN x1 � m0Ny1 � E2kx1 þ Um1Þ;

�y1 ¼
1

E1

ðN y1 � m0N x1 � E2ky1 þ Um1Þ;

cxy1 ¼
2

E1

ðð1þ m0ÞNxy1 � E2kxy1Þ.

ð18Þ
Substituting the above equations in Eq. (17), with the aid of Eqs. (5) and (14), leads to the compatibility
equation of an imperfect FGP as
1

E1

r4f � 2w1;xyðw0;xy þ w�;xyÞ þ w1;xxðw0;yy þ w�;yyÞ þ w1;yyðw0;xx þ w�;xxÞ ¼ 0. ð19Þ
Eqs. (9), (15) and (19) are the basic equations used to obtain the critical buckling load of an imperfect func-
tionally graded plate.

3.1. Buckling of imperfect functionally graded plates under uniform temperature rise

Consider a rectangular imperfect plate made of functionally graded material which is fixed simply supported
and subjected to uniform temperature rise (Meyers and Hyer, 1991). The edge conditions are defined as
u ¼ v ¼ w ¼ Mx ¼ 0 on x ¼ 0; a;
u ¼ v ¼ w ¼ My ¼ 0 on y ¼ 0; b.

ð20Þ
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The plate initial temperature is assumed to be Ti. The temperature is uniformly raised to a final value Tf

in which the plate buckles. The temperature change is DT = Tf � Ti. The prebuckling resultant forces are
defined as (Javaheri and Eslami, 2002a)
Nx0 ¼ �
Um

1� m0

;

Ny0 ¼ �
Um

1� mo
;

Nxy0 ¼ 0;

ð21Þ
where Um is obtained from Eq. (4). The imperfections of the plate, considering the boundary conditions, are
assumed as (Brush and Almroth, 1975; Timoshenko and Gere, 1961)
w� ¼ lh sin
mpx

a
sin

npy
b
; m; n ¼ 1; 2; . . . ; ð22Þ
where the coefficient l varies between 0 and 1 and lh represents the imperfection size. Also, m and n are
number of half waves in x- and y-directions, respectively. The following approximate solution is seen to
satisfy both the equilibrium equation (9) and the boundary conditions expressed by Eq. (20)
w0 ¼ Amn sin
mpx

a
sin

npy
b

m; n ¼ 1; 2; . . . ð23Þ
where Amn is a constant coefficient. Substituting Eqs. (21)–(23) into the third equilibrium equation (9), the
constant Amn is obtained and the final approximate solution can be written as
w0 ¼

Um

1� m0

lh

D
mp
a

� �2

þ np
b

� �2
� �

� Um

1� m0

sin
mpx

a
sin

npy
b

. ð24Þ
Substituting prebuckling resultant forces from Eq. (21) and deflection w0 from Eq. (23) into Eqs. (15)
and (19) yield
Dr4w1 þ
Um

1� m0

ðw1;xx þ w1;yyÞ þ f;yy
mp
a

� �2

þ f;xx
np
b

� �2
� �

ðAmn þ lhÞ sin
mpx

a
sin

npy
b

þ 2f ;xy
mp
a

� � np
b

� �
ðAmn þ lhÞ cos

mpx
a

cos
npy

b
¼ 0;

1

E1

r4f � 2
mp
a

� � np
b

� �
ðAmn þ lhÞw1;xy cos

mpx
a

cos
npy

b

� ðAmn þ lhÞ w1;yy
mp
a

� �2

þ w1;xx
np
b

� �2
� �

sin
mpx

a
sin

npy
b
¼ 0.

ð25Þ
To solve the system of Eq. (25), with the consideration of the boundary conditions (20), the approximate
solutions may be considered as
w1 ¼ Emn sin
mpx

a
sin

npy
b
;

f ¼ F mn sin
mpx

a
sin

npy
b
;

ð26Þ
where Emn and Fmn are constant coefficients that depend on m and n. Substituting approximate solutions
(26) into Eq. (25) gives



B.A. Samsam Shariat, M.R. Eslami / International Journal of Solids and Structures 43 (2006) 4082–4096 4089
R1 ¼ Emn D
mp
a

� �2

þ np
b

� �2
� �2

� Um

1� m0

mp
a

� �2

þ np
b

� �2
� �( )

sin
mpx

a
sin

npy
b

� 2F mnðAmn þ lhÞ mp
a

� �2 np
b

� �2

sin2 mpx
a

sin2 npy
b
� cos2 mpx

a
cos2 npy

b

� �
;

R2 ¼
1

E1

F mn
mp
a

� �2

þ np
b

� �2
� �2

sin
mpx

a
sin

npy
b

þ 2EmnðAmn þ lhÞ mp
a

� �2 np
b

� �2

sin2 mpx
a

sin2 npy
b
� cos2 mpx

a
cos2 npy

b

� �
;

ð27Þ
where R1 and R2 are the residues of Eq. (25). According to the Galerkin�s method, R1 and R2 are made
orthogonal with respect to the approximate solutions as
Z a

0

Z b

0

R1 sin
mpx

a
sin

npy
b

dxdy ¼ 0;

Z a

0

Z b

0

R2 sin
mpx

a
sin

npy
b

dxdy ¼ 0.

ð28Þ
The determinant of the system of Eq. (28) for the coefficients Emn and Fmn is set to zero, which yields
Um ¼
ð1� m0Þp2D

b2

mb
a

� �2

þ n2 þ ðImnÞ1=3

 !
; ð29Þ
where
Imn ¼
1024E1m2n2l2h2

9Dp4
mb
a

� �2

þ n2

" # b
a

� �4

. ð30Þ
Note that these equations are derived for odd values of m and n. If either value of m or n is even, the
system of Eq. (28) results into the trivial solutions for Emn and Fmn, which is unacceptable. The value of
DT is obtained using Eq. (4) as
DT ¼ C
mb
a

� �2

þ n2 þ ðImnÞ1=3

 !
ð31Þ
where
C ¼ ð1� m0Þp2D

b2h Emam þ ðEmacm þ EcmamÞ
1

k þ 1
þ Ecmacm

2k þ 1

� � . ð32Þ
Here, DTcr is the smallest value of DT that is obtained when m = 1 and n = 1. Therefore
DT cr ¼ C
b
a

� �2

þ 1þ ðI11Þ1=3

 !
; ð33Þ
where I11, using Eq. (30), is defined as
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I11 ¼
1024E1l2h2

9Dp4
b
a

� �2

þ 1

" # b
a

� �4

. ð34Þ
Setting l = 0, Eq. (33) is reduced to the critical buckling temperature change of a functionally graded per-
fect plate, which has been reported by Javaheri and Eslami (2002a) as !
DT cr ¼ C
b
a

� �2

þ 1 . ð35Þ
Also, by setting the power law index equal to zero (k = 0), Eq. (33) is reduced to DTcr for homogeneous
imperfect plates, which has been reported by Mossavarali et al. (2000) as
DT cr ¼
p2h2

12ð1þ m0Þb2a

b
a

� �2

þ 1þ ðI11Þ1=3

 !
. ð36Þ
3.2. Buckling of imperfect FGPs under nonlinear temperature change across the thickness

The steady state heat conduction equation and the relative boundary conditions are� �

d

dz
KðzÞ dT

dz
¼ 0;

T ¼ T c; z ¼ h
2
;

T ¼ T m; z ¼ � h
2
;

ð37Þ
where Tc and Tm are the temperatures of ceramic-rich and metal-rich surfaces, respectively. Using Eq. (1),
the heat conduction equation becomes a function of z. The solution is achieved as� �
T ðrÞ ¼ T m þ
DT � r

Pn¼1
n¼0

� rkKcm

Km

n

nk þ 1

Pn¼1
n¼0

�Kcm

Km

� �n

nk þ 1

ð38Þ
where DT = Tc � Tm and
r ¼ 2zþ h
2h

. ð39Þ
Considering the temperature distribution expressed by Eq. (38) and following the same procedure as the
previous loading case, DTcr is obtained as !
DT cr ¼ H
b
a

� �2

þ 1þ ðI11Þ1=3
; ð40Þ
where I11 is defined by Eq. (34) and
H ¼
ð1� m0Þp2D

Pn¼1
n¼0

�Kcm

Km

� �n

nk þ 1

b2h
Pn¼1

n¼0

�Kcm

Km

� �n

nk þ 1

Emam

nk þ 2
þ Emacm þ Ecmam

ðnþ 1Þk þ 2
þ Ecmacm

ðnþ 2Þk þ 2

� � . ð41Þ
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Setting l = 0, Eq. (40) is reduced to DTcr for a perfect FGP. Also, by assuming k = 0, DTcr for an imperfect
homogeneous plate is obtained, which has been reported before as (Mossavarali et al., 2000)
Fig.
DT cr ¼
p2h2

6ð1þ m0Þb2a

b
a

� �2

þ 1þ ðI11Þ1=3

 !
. ð42Þ
3.3. Buckling of imperfect FGPs under linear longitudinal temperature change

Assume a linear temperature variation along the x-direction as
T ðxÞ ¼ DT
x
a

� �
þ T 0; 0 6 x 6 a; ð43Þ
where
DT ¼ T a � T 0. ð44Þ

Here, Ta and T0 are the temperatures at x = a and x = 0, respectively. Following the same procedure, DTcr

is obtained as
DT cr ¼ 2C
b
a

� �2

þ 1þ ðI11Þ1=3

 !
; ð45Þ
where C and I11 are expressed by Eqs. (32) and (34), respectively.
4. Result and discussion

The thermal buckling loads of the rectangular imperfect functionally graded plate are obtained in closed
form solutions for the assumed thermal loadings and are represented by Eqs. (33), (40) and (45). These
equations indicate that the critical buckling temperature change of an imperfect FGP is increased in com-
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1. Critical buckling temperature change of FGP under uniform temperature rise versus aspect ratio and power law index.
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parison with a perfect one. The increase in DTcr is expressed by an imperfection term (I11)1/3, which directly
depends to the imperfection size l. Also, investigation of Eq. (34) shows that the imperfection term is af-
fected by the material and geometrical properties of a functionally graded plate. The fact that the thermal
buckling load of a plate is increased by existence of geometrical imperfections is fully explained by Murphy
and Ferreira (2001). The perfectly flat plate undergoes a symmetric pitchfork bifurcation at the buckling
temperature. In contrast, the imperfect plate develops an asymmetric secondary state by means of a sad-
dle-node bifurcation at the higher temperature (Murphy and Ferreira, 2001). The present study confirms
this behavior for the functionally graded plates.
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Fig. 3. Critical buckling temperature change of FGP under uniform temperature rise versus b/h and power law index.
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Fig. 2. Critical buckling temperature change of FGP under uniform temperature rise versus aspect ratio and imperfection size.
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As an example, consider an imperfect ceramic-metal FGP that consists of aluminum and alumina with
following properties (Javaheri and Eslami, 2002a):
Fig. 5.
index.

Fig. 4.
Em ¼ 70 GPa; am ¼ 23e�6; Km ¼ 204 W=mK;

Ec ¼ 380 GPa; ac ¼ 7.4e�6; Kc ¼ 10.4 W=mK;

m0 ¼ 0.3; h ¼ 0.005 m.

ð46Þ
The plate is assumed to be fixed simply supported on all its four edges. The variation of DTcr versus a/b,
b/h, k, and l are plotted for three types of thermal loadings in Figs. 1–8. Figs. 1, 2, 5, and 8 show that DTcr
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decreases by increasing the aspect ratio a/b. Also, from Figs. 3 and 6 it is seen that DTcr decreases by the
increase of b/h. Figs. 1, 3–8 reveal that DTcr increases by the decrease of power law index k from 5 to 0. In
Figs. 1, 3, and 8, it is seen that DTcr decreases from k = 1 to k = 5 to the much less extent than that from
k = 0 to k = 1. Increase in D Tcr due to enlargement of imperfection size can be easily seen in Figs. 2, 4, and
7. In the case of nonlinear temperature change across the thickness, it is necessary to consider at least the
first 20 terms of the series in Eq. (41) in order to achieve DTcr with appropriate accuracy.
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Fig. 7. Critical buckling temperature change of FGP under temperature change across the thickness versus imperfection size and
power law index.
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5. Conclusion

In the present paper, equilibrium, stability, and compatibility equations for a rectangular imperfect func-
tionally graded plate are derived. Derivations are based on the classical plate theory and with the assumption
of power law composition for the constituent materials. The buckling analysis of such a plate under three
types of thermal loadings is investigated. The plate buckles at first mode and the followings are concluded:

1. The critical buckling temperature change, DTcr, of an imperfect FGP is greater than a perfect one. This
increase is defined by the imperfection term (I11)1/3, which is a function of imperfection size, geometrical
dimensions, mechanical properties of FGP constituents, and the power law index.

2. DTcr of a functionally graded plate increases with the increase of imperfection size l.
3. DTcr of an imperfect FGP is reduced when the power law index k increases. The reduction from k = 0 to

k = 1 is considerable. However, for k > 1, it is marginal.
4. DTcr of an imperfect FGP decreases with the increase of dimension ratios a/b and b/h.
5. DTcr of the plate subjected to linear longitudinal temperature change is twice the one subjected to uni-

form temperature rise.
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